Loss of Sp1 function via inhibitory phosphorylation in antifolate-resistant human leukemia cells with down-regulation of the reduced folate carrier.
نویسندگان
چکیده
The reduced folate carrier (RFC) is the dominant influx transporter for antifolates. A major mechanism of antifolate resistance is loss of RFC (SLC19A1) gene expression due to decreased GC-box-dependent transcription. However, despite the poor GC-box binding in multiple antifolate-resistant cell lines, normal Sp1 levels were retained. Here we explored the post-translational modifications that may disrupt Sp1 function. Phospho-affinity purification of nuclear proteins revealed that resistant cells contained approximately 8-fold more phosphorylated Sp1 than parental cells; treatment of nuclear proteins from these cells with alkaline phosphatase restored GC-box binding. As protein kinase A phosphorylates Sp1, resistant cells were treated with various cAMP-reactive agents, revealing no apparent effect on GC-box binding except for the general phosphodiesterase inhibitor IBMX. As cGMP levels also may be affected by IBMX, resistant cells were treated with 8-pCPT-cGMP, resulting in the complete restoration of GC-box binding, luciferase reporter activity, and RFC mRNA levels. This restoration was abolished in the presence of the protein phosphatase 2A inhibitor (PP2A) okadaic acid. Importantly, whereas resistant cells showed multiple phosphorylated Sp1 forms barely detectable in parental cells, treatment with 8-pCPT-cGMP resulted in their elimination; this disappearance, however, was prevented by the copresence of okadaic acid. These findings provide the first evidence that loss of RFC gene expression in antifolate-resistant cells is associated with an inhibitory Sp1 phosphorylation that can be eliminated by a cGMP-dependent activation of PP2A.
منابع مشابه
Impaired CREB-1 phosphorylation in antifolate-resistant cell lines with down-regulation of the reduced folate carrier gene.
The human reduced folate carrier (hRFC) is the dominant transporter for the uptake of antifolates used in cancer chemotherapy. We have shown recently that decreased cAMP-responsive element (CRE)-dependent transcription contributes to the loss of hRFC gene expression in multiple antifolate-resistant cell lines. This was associated with markedly decreased levels of phosphorylated cAMP response el...
متن کاملCoexistence of multiple mechanisms of PT523 resistance in human leukemia cells harboring 3 reduced folate carrier alleles: transcriptional silencing, inactivating mutations, and allele loss.
The reduced folate carrier (RFC) is the dominant route for the uptake of various antifolates including PT523, a potent dihydrofolate reductase inhibitor (Ki = 0.35 pM) and an excellent transport substrate of the RFC (Kt = 0.7 microM). Here, we describe the multiple mechanisms of RFC inactivation in human leukemia PT523-resistant cells originally harboring 3 RFC alleles. Cellular exposure to gra...
متن کاملCoexistence of multiple mechanisms of PT523-resistance in human leukemia cells harboring three reduced folate carrier alleles: transcriptional silencing, inactivating mutations and allele loss
The reduced folate carrier (RFC) is the dominant route for the uptake of various antifolates including PT523, a potent dihydrofolate reductase inhibitor (Ki=0.35 pM) and an excellent transport substrate of the RFC (Kt =0.7 μM). Herein we describe the multiple mechanisms of RFC inactivation in human leukemia PT523-resistant cells originally harboring three RFC alleles. Cellular exposure to gradu...
متن کاملSensitivity to 5,10-dideazatetrahydrofolate is fully conserved in a murine leukemia cell line highly resistant to methotrexate due to impaired transport mediated by the reduced folate carrier.
A murine leukemia cell line was identified that is highly resistant to methotrexate (MTX), due to impaired transport, but fully sensitive to 5,10-dideazatetrahydrofolate (DDATHF). A valine-to-methionine substitution at amino acid 104 in the reduced folate carrier (RFC1) explains this disparity in drug resistance. Transfection of the V104M cDNA into an RFC1-deficient cell line markedly increased...
متن کامل5-amino-4-imidazolecarboxamide riboside potentiates both transport of reduced folates and antifolates by the human reduced folate carrier and their subsequent metabolism.
Transport is required before reduced folates and anticancer antifolates [e.g., methotrexate (MTX)] exert their physiologic functions or cytotoxic effects. The folate/antifolate transporter with the widest tissue distribution and greatest activity is the reduced folate carrier (RFC). There is little evidence that RFC-mediated influx is posttranscriptionally regulated. We show that [(3)H]MTX infl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 107 2 شماره
صفحات -
تاریخ انتشار 2006